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Evolution in a spatially structured population subject to rare epidemics
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We study a model that gives rise to spatially inhomogeneous population densities in a system of host
individuals subject to rare, randomly distributed disease events. For stationary hosts that disperse offspring
over short distances, evolutionary dynamics can lead to persistent populations with a variety of spatial struc-
tures. A mean-field analysis is shown to account for the behavior observed in simulations of a one-dimensional
system, where the evolutionarily stable state corresponds to the solution of a straightforward optimization
problem. In two dimensions, evolution drives the system to a stable critical state that is less well understood.
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[. INTRODUCTION certain limiting cases that demonstrate some of the qualita-
tively different types of behavior that are possible. First, we

This paper concerns a model recently developed in th@ssume that both the rate of disease spreading and the rate at
context of research into the origins of spatial structure invhich death occurs once a disease is contracted are ex-

populations of very simple biological organisms. The modelféMely rapid compared to the reproduction rates of indi-

consists of rules for the reproduction, natural death, anefIdual organisms. Our mode| treats entire epidemics as in-
death due to diseager other type of disturbangef indi- Stantaneous events. Second, we assume that the length scales

idual h livi h latii £ i | for offspring dispersal and disease transmission are approxi-
vidual ‘hosts living on a homogeneous lattice of sites. Al-paa|y the same and both are equal to the size of a patch of

though the model clearly does not accurately represent a regdritory occupied by an individual organisf8]. Modeling
biological system, it illustrates two nontrivial effects that the system as a lattice of square patches, each of which can
may be relevant for understanding the spatial distribution Ofsupport a 5ing|e organism, we assume that a new Organism
some species. The first is the dramatic difference in the stanust be born on a patch directly bordering that of its parent.
tistical steady state of “well mixed” populationgalways We also assume that the disease can spread from an organ-
randomly distributed in spagand “sessile” populationgin ~ ism on a given patch only to those that live on the patches
which organisms never move from their birthplack the  directly bordering that patch. In addition, we assume that the
sessile case a spatial structure emerges that permits persisease is highly infectious and lethal; all organisms close
tence of the species in situations where the well-mixecenough to an infected one do contract the disease and die
model leads to rapid extinctidri]. The second effect is that from it.
evolutionary dynamics operating on the natural mortality rate  One might also introduce a time scale for the movement
selects for spatial structures with special properties. In on&f organisms. In the well-mixed case, it is assumed that or-
dimension(1D), a mean-field calculation of the steady statedanisms move extremely rapidly compared to the rate of
mortality rate based on a particular optimization principleb'”hs, but extremely slowly compared to the Spreadmg rate
compares well with simulation results. In 2D, evolution se-Of diseases, and that they pay no attention to the positions of
lects for a critical state that remains to be understood.  CtNer organisms except to avoid having two occupying the
The discussion below treats a particular population dy_same patc'h.. Thus s_napshots of the system_separated by a
namics model from a statistical physics perspective. The r small but finite time |_nterval, WOUld. reveal entirely uncorre-
lation of the model to issues of ecological or biological in- ‘.Fﬂed' randomly distributed popu_latlons, but thE‘?e configura-
terest is beyond the scope of this work. For recent papers arfipns W.OUId be frozen on the time sgale required for any
references to more biologically oriented studies, see [R&f. epidemic, no matter how large, to run its course.
and[3]. Reference$3-7] discuss issues of spatial structure In the sessile case, thg organisms do not move at all. Both
in the context of related ecological models. the rules that offspring live next to their parents and that

The dynamics of a host-disease system necessarily i’_Ei‘seases propagate through local contact only lead to non-

volves several processes with logically distinct spatial scale ivial spatial _correlatlons n the populat|c_)n. The effec_ts .Of
(area occupied by an individual, distance over which off- ese correlatlo_ns on e\{oluu_onary dynamics are the principal
spring are dispersed, distance over which diseases can Bgenomena of interest in this paper.

transmitted between ho$tand temporal scaleirth and Il DETAILED SPECIEICATION OF THE MODEL

death rates, the frequency of diseases, the spreading rate of

disease, mobility of hosts, rate of evolution of relevant The model consists of individual organisms that live on

traits). For the purposes of this paper, we are interested ithe sites of a regulaflinear or squarglattice with periodic

1063-651X/2001/6@}/0419088)/$20.00 63 041908-1 ©2001 The American Physical Society



SOCOLAR, RICHARDS, AND WILSON PHYSICAL REVIEW B3 041908

boundary conditions. The total number of sites in the latticegiven equal weight has sizes. Since any individual is
is denoted by.. At any given time, there can be at most one equally likely to start an epidemic, the probability that an
organism on a given site; i.e., each site is either occupied bgpidemic will have sizes is

a single organism or unoccupied. The individual organisms

are indexed by an integer latighnd each is characterized by P(s)=sC(s)/Np, (1)
two positive real numbersy; andb; determining its mortal-
ity and reproductive rate. whereNp=X__;sC(s).
In a single time step, one site is selected at random. The
rate at which sites are selected is denoteghbif the site is IV. STEADY STATES IN ONE DIMENSION

occupied by organismy one of three things can happen.
(1) With probability m;, the organism dies, leaving the
site unoccupied. The 1D case where individuals are randomly distributed
(2) With probabilityb;, the organism attempts to produce in space at every time step can be treated analyti€a]lyet
an offspring at a randomly selected nearest neighbor site. Ki(t) denote the fraction of sites occupied at titnand as-
the selected neighboring site is occupied, the offspring isume, for the moment, that;=m (andb;=b) for all i, and
aborted. If it is unoccupied, the offsprifgs recruited there. thatp,=p,=0 so there is no mutation.
The mortality and birth rate of the offspring are given by In the infinite system size limit, for any finite set of sites
m;=m;+A, and b;=b;+A,. A mutation A,#0 occurs the probability that a given site is occupiednsindependent
with probability p,, in which caseA, is uniformly distrib-  of the other sites in the seflf the set is infinite or if the
uted in the interval — u,,uy], Whereu,,, and u, are con-  system size is sufficiently small, the probabilities must be
stant parameters. If this procedure resultsnin<0, thenm; correlated to ensure that the density is indegd’o compute
is set to 0, and similarly fob; . C(s), suppose a site is selected at random from among the
(3) With probability d, the organism contracts a disease.set of occupied sites that are immediately to the right of an
The disease spreads extremely rapidly to all neighboring ornoccupied site. The probability that the cluster containing
ganisms, and then to their neighbors, and so on, until it ighis site is of sizesis equal to the probability that each of the
stopped by a wall of unoccupied sites. Every organism thas— 1 sites directly to its right are occupied and the next one
contracts the disease dies before the time step is completed. unoccupied:
Thus the result of a disease is that an entire connected cluster 1
of occupied sites becomes unoccupied in a single instant. C(s)=n>""(1—n). @
Note that we must always have +b;+d=<1 for all i in
order for the probabilities to be well defined. If this condition

A. The well-mixed case

From Eqg.(1) we obtain

is ever violated during the evolution of the system, we sim- P(s)=sr"Y(1-n)?, 3)
ply renormalize all them; , b;, andd by a uniform factor and
adjust the duration of the time step accordingly. which implies an average epidemic size

For most of this paper we consider the case of uniform
birth probability;b;=b for all i andp,=0. We are particu- s :1+_” (4
larly interested in the case whedes extremely small com- &g 1-n’

pared tob, but large compared to the rate of evolution of the )
m;’s. In rough terms, the life cycle of an individual organism Note thatP(s) decays exponentially for large .
is typically short compared to the time between epidemics, Since the probabilities of occupation of adjacent sites are
but the full population dynamics including the effects of dis- Independent, the following equation describes the dynamics
ease occurs against a backdrop of slower evolutionary prd?f n in the large system limit:
cesses.
dn
a:pn[b(l_n)_m_dsavg]! 5

Ill. QUANTITIES OF INTEREST
. . where the first factor ofh represents the probability of se-
thr;-g (;:Ssrzﬁgfsrfz'[?];Qﬁt;e:sr\gg;rogftr;?gzﬁ;?mr;v:r?ef;);g.s Orl'ecting an occupied §ite on a given time step gnd the factor of
tem; the averagie mortality raten)=3;m;/N; and the dis- (1—n) enters the birth term because offspring are created

L ) S LR . . only if the target site selected for dispersal is unoccupied.
tribution of epidemic size®(s). The size of an epidemis,

is defined as the number of organisms that die as a result %%;hiviﬁgﬁd%eﬁge value' is obtained by settingn/dt to
a single disease everR(s) denotes the relative frequencies '

of epidemics with size equal ®observed during a suitably n*=1-[m—d+ /—(m—d)2+ 8bd]/(2b). (6)
long time interval in the steady state, and is normalized to
unity: =5_,P(s)=1. Regardless of the value af smallerm leads to largen*.

Note thatP(s) is also closely related to the cluster size Thus, although the average epidemic size grows with de-
distribution for the system as it is commonly defined in sitecreasingm, the total population density always increases. If
percolation studies. LeE(s) be the normalized probability m/b or d/b is too large, therdn/dt is always negative and
that a connected cluster chosen at randwiith each cluster the population decays to zero, or extinction. Henceforth we
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shall assumel/b<1 andm/b sufficiently small that extinc- 0.10 . 40 .
tion due to natural deaths does not occur.
The introduction of mutations im; has a dramatic effect 0.08 | : §‘
on the long-term behavior of the well-mixed model. Evolu- % $ 20 | i
tion will select for smaller values af; in this case. Since 0.06 <
R

individuals with differentm’s are randomly mixed through-

out the system, the rates of birth and the effects of epidemics ., o o
are the same for all individuals. Thus the individuals with o 5 10 0 005 0.1
longer life expectancies and their offspring will gradually (@) time (arb. units) (b) m;

take over the system. This argument is supported by a stan- FIG. 1. Evolutionary behavior of mortality rates in the 1D
dard invasion analysis in which one assumes a small concegessile case. Plots are shown for a lattice df dites, withb=1,
tration n;<1 of organisms withm;=M in a sea of organ- p,=0.1, andd=10"*. (a) (m)(t) for different mutation rates and
isms n, with mj=M, [1,9]. Letting n=n;+n,, the different initial conditions. The upper traceots is for wp

dynamical equations for the population densities are =0.001. The lower trac¢dots is for u,=0.02. The two longer
traces(solid lineg are for u,,= 0.005 with different initial uniform

values ofm;. (b) The final distribution ofm; in each of the two
um=0.005 runs, averaged over the time interval from 12 tdrizs
shown for each run.

dan,
St =Plb(1=n) =M~ d 55,6 7)
for x=1,2 ands,,q still given by Eq.(11).

Consider a system witm;= M, for all i that has reached

B . . .
a steady state. The term in brackets on the right-hand side (ﬁ<m> for all m, calculation oin IS beyond the scope of th's_
Eq. (7) then vanishes fox=2. If a very small densityn, work. Nevertheless, the correlation between the occupancies

<n, of organisms withm,= M is now added to the system of sites decays exponentially with the distance between
the right-hand side of 'Ithe equation far=1 is obviously " them, so a self-consistent calculation of the average cluster
positive if and only ifM;<M,. Thus mutant organisms with size is possible, and an understanding of the long-term result

smaller values oim grow in concentration, while mutants of evolutionary dynamics can be obtained.
with larger values of will decay to extinction Numerical simulations reveal a striking difference be-

Let (m)(t) be the average value @ over the current tween the long-term evolution in the sessile and well-mixed
|

population. In a system where mutation occurs slowlyCaSes: In the sessile cagm) fluqtugtes about a stable value
enough that the distribution ah,'s remains narrow and the &nd the system reaches a statistical steady dfaeference
system is always near a steady state corresponding to [10] _d|scusses _another e>_<amp|e of the _selectlon of an inter-
=(m) for all i, (m) will exhibit steady decay toward zero. In mediate rates in a parasite-host sysjefigure 1@ shows

a finite system with sufficiently smadl, this implies thatm) time traces of m). The longer, solid curves show that dif-

will eventually become so small that birth events will fill the :‘eren(tj |n|t||al conditions with( ”.‘> S altl)oyed_and be.Ichglhe se-
lattice, forming one big cluster that will be wiped out in an ected value converge to statistically indistinguishable states.

epidemic. Thus the evolutionary dynamics in the well-mixed '€ dotted traces show that the steady statg depends

model drives any finite system to extinction and no stead)}’pon the v_a_lue of mutation rate. When th_e mutation fatg

state is reached. Mmm) 1S sufficiently sm_all that there is effectively no e\_/olutlon
Note that the probabilistic nature of the model guarantee&" the scale of the disease ratewe expec{m) to be inde-

that extinction will eventually occur in any finite system due Pe€ndent ofuy, . Figure 1b) shows the distribution ofn; in

to a large fluctuation. When we speak of a statistical stead}’® Steady state for the two longer runs showitan

state here, we mean that the system would persist indefinitely OUr goal is to calculate the steady state valugnof. The
in that state if it were infinite in extent. Indefinite persistencek€Y IS to identify an appropriate optimization problem that
does not occur for the well-mixed model with evolution, &N be solved on the basis of plausible assumptions concern-

since (m) never reaches a statistically stable value. Using"9 the cluster size distribution for fixed. We argue that the
finite simulations, however, extinctions caused by evolutionf€/€vant quantity to optimize is thgrowth rate of a colony
toward(m)=0 and by statistical fluctuation with fixegny  Surrounded by unoccupied sitéSonsider a grougnot nec-
can be distinguished. Extinction occurs much more rapidly iffSSarily @ single clusteof organisms withm;=m that is
the former case, and the time to extinction grows much mor&ontained within a finite interval on the lattice. Left) be
slowly than the system sizéWe have not measured the the position of the rightmost organism at timerhe growth

precise dependengeFor a stablém), the time to extinction ~rate of the colony is defined as the average valuebatit
due to fluctuations grows exponentially with system size. OF larget. We wish to find the value ahthat maximizes the
growth rate for given values df andd.

Note that maximizing the growth rate is not logically
equivalent to minimizing the total death rate from natural

When the organisms are considered immobdepriori causes and diseases. The interior structure of the growing
analysis becomes more difficult. Because each offspring isolony is not important in the sessile case in 1D. Since there
born next to its parent and stays there, the probability of das no way for a competing colony to invade unoccupied sites
site being occupied depends on the probability that its neighbetween the leftmost and rightmost members of a colony,
bors are occupied. Even for identical individuals, whan  faster growing colonies win. For completeness, one must

B. The sessile case
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FIG. 2. Cluster size distributions in the 1D sessile case Wwith
=1.0 andd=10"“. NormalizedC(s) (left) andCqqds) obtained
from clusters in a growing colony. 0 ' - ' : :
0 0.05 0.1 0.15 0.2
m

;’:Illso note thr?t mher:htwo %olon_|des come Itn ::odnt_acgﬁ theiy Itn- FIG. 3. Comparison of calculated average cluster size with

uence each other through epidemics initia e“ IN € CIUSIELnjations. Plots are shown for the case 1.0. For each data
where they are joined, which consists of two “subclusters, point, all organisms in the system have the same fixed value of
one from each colony. In this configuration, the subcluster,, ihere is no evolution.

from one colony can be destroyed by a disease initiated on

the adjoining subcluster from the other colony. The effects ofy g should ben= sP(s), orn Savg, WhereP(s) is obtained

such epidemics are neutral on average. In any given configyrom C(s) via Eq. (1). Using the form ofC in Eq. (8), we
ration the product of the length of a subcluster and the probgptain

ability that subcluster will be destroyed by a disease initiated
in a subcluster from the other colony is the same for both 1

subclustergproportional to the product of the sizes of the ¢ l1—-e @ (10

two subclusters Thus the epidemics that span the front di-

viding the two colonies do not, on average, affect the posi-

tion of the front; the motion is determined entirely by how 11e@

fast the colonies grow into a gap that separates them. Savg= (11
To estimate the value ah that gives rise to the fastest l1-e“

e make the approximation that the distbutiormin the  FO! OUI PYESEnt purposes, we consider the oasd., corre-
PP g sponding to the large’s that arise fod<<b. It then becomes

steady state is 4 function atm; =(m). Second, weassume reasonable to writs,,,=2c. [Note that for the well-mixed

that C_(s) decayg exponentially in the steady state corre—case, Eq(2) has the form of Eq(8) with a=logn, and Egs.
sponding to(m); i.e., that (5) and(9), with 2c replaced bys,, 4, are equivalen.
C(s)=Ae *5, (8) In the steady state, the right-hand side of &j).vanishes,
implying

whereA=1/2;_,C(s) is a normalization constant. The latter
assumption can be checked numerically and is confirmed to m 8bd
the degree illustrated in Fig. 2. Notice that the exponential C=7g| ~1t 1t ek (12
form holds down to rather smaidl If this were not the case,
the calculations below would contain additional numerical,:igure 3 shows a comparison of this formula with simulation
factors determined by the precise form of the distribution..agyits ford=10"% and 10°5. Note that ford<m2/b we
Finally, we assumethat the statistics of clusters at the edgepayec~p/m and the cluster size distribution becomes inde-
of a growing colony are the same as those in the bulk Steadéfendent ofd.
state. This assumption is also borne out by the numerical gq, 4 colony growing into unoccupied territory, the
simulations summarized in Fig. 2. growth rate is given on average by

To calculatec, the average cluster size in the bulk steady
state, we begin with the rate equation fgrrewritten in a dx
way that does not depend upon the assumption of uncorre- at
lated site occupation:

=p g—m[1+C(1)g]—d(202+gc) . (13

whereg is the average size of a “gap,” a string of unoccu-
) pied sites between two clusters. The coefficientt atcounts

for the fact thatx advances only if the birth occurs to the

right of the rightmost organism. The coefficientrafis unity
The coefficient ofb is just the probability of selecting an except when the rightmost organism forms a cluster of size
occupied site at the edge of a cluster and selecting a neigh in which casex decreases additionally by the size of the
boring unoccupied site for the offspring. Each edge of thegap to its left. The coefficient df is [s(s+g)C(s) ds, the
cluster contribute®/2 to the rate because exactly one of itsfirst factor ofs representing the probability of selecting a site
two neighboring sites is unoccupied. The precise coefficienin the cluster and the+g term representing the resulting

dn

1
a=pn bE—m—dZC
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TABLE I. Cluster and gap size data for 1D sessile model withfor d=10"% and 10°° and several values ah, where we

different disease ratet Data were compiled from single runs on a have used Eq(12) to expressdx/dt in terms ofm. The
system of 10 sites with parameteiis=1.0, initial m; all set to 0.1, agreement is quite good.

Pm=0.1, un=0.001. Following a transient of ¥®pidemics, data Substituting forc from Eq. (12) we obtain the following
were averaged over 200 configurations separated in time by 2500 . .
equation form, the value ofm that maximizesdx/dt:

epidemics.
3 2 2 Ah2d4—
Fraction of size mg+dmg+8bdmy+8bd“—4b“d=0. (14)
d A lust A 1 clustersC(1 . .

verage cluster  Average gam ClustersC(1) Note thatb is of order unity. We make the ansatg~ d*/*
1073 6.2 3.1 0.14 and count powers ofl in each term. Neglecting terms of
104 14.5 2.4 0.07 power 4/3 or higher ird, we find
10°° 354 2.8 0.03

Mo= 41/3b2/3d 1/3, (15)

size of the change ix. [Note the difference between this justifying the ansatz. The approximation neglects terms a
coefficient, which is ordec?, and the coefficient off in Eq.  factor of d*® smaller than the result.

(9). The difference arises becausé=N.c has been fac- Equation(15) represents a parameter-free calculation of
tored out in Eq(9), whereN, is the number of clusters in the the value of(m) that should be selected by evolution for
system|] sufficiently smalld. This may be compared with average

For d<m, the distribution of gap sizes is dominated by values measured in simulations. Fb+10"* and 16 (with
the statistics of gaps produced by natural deaths rather thdr=1), we calculatemy=0.074 and 0.034, respectively.
diseases. During the periods between diseases we expect Bmulations on a lattice of f0sites withp,=0.1 andu,
m; to mutate toward lower values, $m) becomes substan- =0.001 yield (m)=0.068+0.002 and 0.0290.003. Note
tially smaller thanb. Moreover, when a disease creates afrom Table I, however, that for these valueschfthe quan-
large gap, that gap can only be filled in from the ends; therdity C(1) g is not negligible, being of order 0.1. When the
is no way to break the large gap into two smaller ones bymeasured values are used in Et3), the calculated values
inserting organisms in the middle of it. The result is that theof mq shift to 0.070 and 0.033. The reasonably good agree-
vast majority of gaps have size 1 agdremains of order ment with simulations indicates that the evolutionary dynam-
unity even thougrc can be much larger. In addition, since ics is consistent with our picture of the 1D system. In par-
b>(m), isolated organisms are rarely produced and do noticular, the system retains a finite correlation lengtr
remain isolated for long, so th&(1)<1. These arguments average cluster sizéor any nonzeral, and a treatment ne-
become increasingly unreliable dsis increased, in which glecting correlations in the sizes of adjacent clusters is ad-
case the selecte(n) increases and decreases, but we are equate for understanding the steady state.
interested in the limit of smaldl. Table | shows values ob-
tained from simulations witli=10"3, 10 4, and 10°. V. STEADY STATES IN TWO DIMENSIONS
For sufficiently smalld (which generates large), we
may neglect the contributions proportionaldan Eq. (13).
Figure 4 shows a comparison of E@.3) with simulations The analyses of the well-mixed and sessile cases in 1D do
not transfer easily to two dimensions. In the well-mixed case,
' however, the basic phenomenology is the same. As in 1D,
@ 4=10" data the lack of spatial correlation among closely related off-

_ © d=10" data TN e :
951 5o-Q =10 theory spring implies that it is always advantageous to live longer.

A. Self-organized criticality

1 T T

o
©
1
/

DA ——- d=10" theory Evolution drives(m) toward zero, resulting in increasingly
e~ . large fluctuations in the population size and rapid extinction.
In the sessile case, the situation is quite different. As in
1D, colonies of organisms with lowen; become more dense
and epidemics propagate more easily through them, which
provides a mechanism for suppressing the evolutionary pres-
sure toward(my=0. For fixedm;={(m), two qualitatively
. . s different behaviors are observed in simulatiof®ee Fig. 5.
0 0.05 01 0.15 0.2 For relatively smallm) as in Fig. %a), the population is best
m described as consisting of distinct colonies that grow into
FIG. 4. Comparison of calculated growth rate with simulations./2rg€ empty spaces and sometimes merge. The density within
Plots are shown for the cake= 1.0. For each data point, all organ- & colony is sufficiently high that almost all the organisms in
isms in the system have the same fixed valuemetthere is no it die in a single epidemic, with just a few survivors around
evolution. The theory curves are obtained from Ex) under the  the edges. It then takes a long time, comparable to the dis-
assumption that thg terms are negligible. The arrows indicate the €ase rate, for the new colonies spawned by the survivors to
average values ah measured in the steady state of systems 4f 10 fill in the emptied regions. For relatively larden) as in Fig.
lattice sites withp,,=0.1 andu,=0.001. 5(b), the population density remains low and is roughly ho-

o
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(b) 10° . . . .
~d=1x10"
- . «d=3x10"°
I rd=1x10"° |
—_—
210" - i
AL
10° | q
-ﬁ;‘%. 10_8 1 : Is I4 I5 5
B, 0 10 10° 100 10 10 10
& Epidemic size, s
ol Ut o E FIG. 6. Normalized epidemic size distributions from simulations

in the 2D sessile case on a 51812 lattice for the three values of

: d indicated in the legend. Parameters &re 0.5, p,,=0.1, and

g i o um=0.02. The central curve shows the power law corresponding to
, , i k-7 e j‘,‘-ﬁv Y : the smallesd that permits data uncorrupted by finite size effects.
— - The upper(lower) curve is shifted ugdown) by a factor of 10 for
FIG. 5. Snapshots of a 256256 system after approximately“l0  clarity. The solid line of slope-1 is a guide to the eye.

epidemics. Parameters abe=0.5 andd=10"°. Gray scale indi-
cates the value afy, . Darkest gray indicates); near 0.09; lightest
gray indicatesn; near 0.2(a) All m; fixed at 0.09: dense, separate

colonies.(b) All m; fixed at 0.20: homogeneous density with small . 5
holes due to epidemicsc) All m; fixed at 0.15: critical structure were increased. For the=3X10"" run, (m) began at 0.8,

corresponding to the average valuenofelected by evolutiond) fe&}Ched a value of roughly (h3after approximately 1000
Evolved system withp,,=0.1 andy,,=0.01. epidemics, then fluctuated between @2Md 0.3» over the

course of the following 50 000 epidemics.

We note that the observed value ofis consistent with
hat measured by Henley for a “self-organized percolation”
SOP model[13]. The SOP model differs from ours in three

smaller system sizes indicate that the peak at large sizes ob-
served for the smallest would disappear if the system size

mogeneous in space. Epidemics carve out relatively sma{
empty regions, which are filled on time scales that may b

Zli:\éva(;c;n:g{aered to the birth rate, but are fast compared to th espects(i) new hosts are generated at each unoccupied site
In two dirﬁensions colonies are not protected from inva-at a steady rate, independently of the presence of other hosts
sion the way they are in 1D. Any gaps in the boundary of the! the system(ii) the rate at which disturbances occdrin

rowing colony permit invasions by organisms with different oo model, is assumed to approach zero; @ilthere is no
9 9 Y Pe asions by org . evolutionary mechanism in the system. We have not yet
m;. Thus there is less justification for using the colony

> . : .7 gathered enough data to determine whether the two models
growth rate as a criterion for selecting the evolutionarily

stable state. Moreover, if the same argument applied above in different universality classes.
: ’ 9 pp It may be tempting to relate the self-organized critical

to the 1D case 1s a.ttempted.for_ZD, the sel-f-.con3|stency OE)ehavior to ordinary site percolation in 2D, but the connec-
the approximations is not maintained. In addition to the tech-

nical difficulty of estimating the number of sites available for tion is tenuous. As Fig. (§) clearly shows, the spatial struc-

new offspring in a typical cluster, a fundamental difficulty is ture of the population in the steady state is far from homo-
P g yP ) ’ ) YIS geneous. There are relatively dense regions where diseases
encountered: the assumption of an exponentially decayin

S ) o . "Rave n red for some time, and there are sparse re-
P(s) is violated in the evolutionarily stable state. For suffi- ave not appeared for some time, and there are sparse re

. : i that in th f bei fill fter | i-
ciently smalld and large system size, the system evolves to %IOI’]S atare in the process of being refilled after large epi

. o emics have swept through. Thus we do not expect the av-
state wherd(s) has a power-lgw ta|l,.e.1nd may be classified erage density in the critical state to be directly related to the
as an example of aelf-organized criticalstate[11]. The ; :

. . oy site percolation threshold.

power law inP(s) may be cut off either by the finite system
size or by nonzeral. (See Ref[12] for analysis of another
host-pathogen model in which evolution of the disease trans-
missibility drives the system to a critical state. It is instructive to consider what happens in this model

Figure 6 shows the distribution of epidemic sizes in thewhenb andm arebothallowed to evolve. The system passes
steady state, which has a power-law regiR(es)«s™ " with  through three distinct regimegt) an initial rapid adjustment
v=1. For this figured=3x10 ® was choserby trial and  of (b) and(m) to bring their ratio to a critical value as in the
erron such that the cutoff due td was roughly the same as case wheré is held fixed (b)/(m)~2.5); (2) a period in
the cutoff due to the finite system size. Plots fd=1  which (b) and(m) grow in tandem with their ratio roughly
% 10" % and 1x 10 ® are shown for comparison. Studies with constant, generating a power-law distribution of epidemic

B. Evolving b and m together
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sizes with an increasing cutoff size; a8 a period in which  surviving offspring is to die and leave holes that stop disease
the epidemic size distribution is dominated by finite size ef-transmission. Previous kin selection studies have focused
fects (rather than cut off due to nonvanishingy, population  primarily on the competition between siblings that results
density fluctuations become extremely large, and eventuallyhen offspring are produced locallt4—16; these models
extinction becomes probable. typically examine evolution for dispersal, and the concepts
During the last periodh andm increase faster than expo- pehind kin selection may help explain the dispersal of off-
nentially in time, and(b)/(m) increases rapidlytA similar  spring even when such dispersal is risky. In a similar manner
situation occurs in the 1D system as welln effect, the jndividuals in our model have a decreased fithess when off-
dynamics is dominated by the rapid evolution between disgying are produced locally because death by disease is me-
turbance events, which leads to extremely high birth ratesyiieq by neighbors. In our case we have not incorporated
The epidemic size distribution in this regime is dominated byevolution of dispersal; however, if we were to fix mortality

system-wide events, one of which eventually causes the ex: o
tinction. The time to extinction by this mechanism does de?ates, we strongly suspe@nd preliminary runs showthat

pend upon the initial value od, but due to the exponential selection would favor higher dispersal. Unfortunately, higher

growth of the birth and mortality rates during the secondd's.p(":‘rsfal causes the mor ta“.ty rate to evolve to lower levels,
which in turn causes extinction.

regime listed above, it is impossible to delay the extinction H . .
for long. It is clear from the previous section, however, that | "€ Present study may also be relevant for future investi-

a persistent population can be obtained if a maximum pirtPations into the origin of power-law damage distributions in

rate is imposed, which is clearly a reasonable restriction for £/0IVing systems. Two intriguing but rather different expla-
biological system. nations for the generic occurrence of power-law distributions

have been suggested in the recent physics literature. The
VI. CONCLUSION: SPATIAL STRUCTURE, KIN theory of self'-organized critipalitySOQ explains the power
SELECTION, AND OPTIMIZATION Iaw§ _by placing the mod_el in a broa_ld class of systems that
PRINCIPLES exhibit avalanche dynamics \_Nh_en d_rlven very slojd{]. In _
such models, power-law distributions of avalanche sizes
The emergent spatial structure in the model we have inemerge at the slowest driving rates for generic parameter
vestigated is of interest for both biologists and physicistsvalues. A second proposal is that power laws are indicative
First, it is a crucial ingredient in the evolutionary stability of of a system that has resulted from a design process that pro-
this simple system. Second, it is an example of a nonequilibduces states that minimize the expected damage in an uncer-
rium physical structure that arises as a solution to a completain environment, states exhibiting “highly optimized toler-
optimization problem. We conclude with some remarks onance” (HOT) [17]. One may argue that natural selection in
each of these issues. the biological world acts to create HOT configurations at the
In the well-mixed model, if a disease infects an individual organism or ecosystem level.
it is transmitted to a neighbor that is a randomly selected Our 2D results are characteristic of SOC systems. Evolu-
individual. However, in the sessile model neighbors aretion of the mortality to a critical value is roughly analogous
likely to be closely related because of the contact procest the evolution of the slope of a granular pile to the value
nature of reproduction. When a disease infects an individuakthat produces power-law distributions of avalancfis. It
the individual passes it on to relatives, and this interactions interesting to note, however, that the 1D model with the
brings up issues of “kin selection.” In the well-mixed same dynamical rules does not yield SOC. Our current
model, selection drives the mortality rate to zero because amodel is not expected to give rise to HOT states, at least in
individual's fitness is just a matter of producing more off- part because the system is spatially homogeneous. In future
spring than other individuals. In the sessile model, an indistudies we plan to seek evidence for rudimentary HOT states
vidual's fitness is influenced by siblings passing diseases oresulting from evolution in systems with a slow gradient in
to one another, and an effective strategy for passing on morhe disease rate.
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