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Evolution in a spatially structured population subject to rare epidemics
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We study a model that gives rise to spatially inhomogeneous population densities in a system of host
individuals subject to rare, randomly distributed disease events. For stationary hosts that disperse offspring
over short distances, evolutionary dynamics can lead to persistent populations with a variety of spatial struc-
tures. A mean-field analysis is shown to account for the behavior observed in simulations of a one-dimensional
system, where the evolutionarily stable state corresponds to the solution of a straightforward optimization
problem. In two dimensions, evolution drives the system to a stable critical state that is less well understood.
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I. INTRODUCTION

This paper concerns a model recently developed in
context of research into the origins of spatial structure
populations of very simple biological organisms. The mo
consists of rules for the reproduction, natural death,
death due to disease~or other type of disturbance! of indi-
vidual hosts living on a homogeneous lattice of sites.
though the model clearly does not accurately represent a
biological system, it illustrates two nontrivial effects th
may be relevant for understanding the spatial distribution
some species. The first is the dramatic difference in the
tistical steady state of ‘‘well mixed’’ populations~always
randomly distributed in space! and ‘‘sessile’’ populations~in
which organisms never move from their birthplace!. In the
sessile case a spatial structure emerges that permits p
tence of the species in situations where the well-mix
model leads to rapid extinction@1#. The second effect is tha
evolutionary dynamics operating on the natural mortality r
selects for spatial structures with special properties. In
dimension~1D!, a mean-field calculation of the steady sta
mortality rate based on a particular optimization princip
compares well with simulation results. In 2D, evolution s
lects for a critical state that remains to be understood.

The discussion below treats a particular population
namics model from a statistical physics perspective. The
lation of the model to issues of ecological or biological i
terest is beyond the scope of this work. For recent papers
references to more biologically oriented studies, see Ref.@2#
and @3#. References@3–7# discuss issues of spatial structu
in the context of related ecological models.

The dynamics of a host-disease system necessarily
volves several processes with logically distinct spatial sca
~area occupied by an individual, distance over which o
spring are dispersed, distance over which diseases ca
transmitted between hosts! and temporal scales~birth and
death rates, the frequency of diseases, the spreading ra
disease, mobility of hosts, rate of evolution of releva
traits!. For the purposes of this paper, we are interested
1063-651X/2001/63~4!/041908~8!/$20.00 63 0419
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certain limiting cases that demonstrate some of the qua
tively different types of behavior that are possible. First,
assume that both the rate of disease spreading and the r
which death occurs once a disease is contracted are
tremely rapid compared to the reproduction rates of in
vidual organisms. Our model treats entire epidemics as
stantaneous events. Second, we assume that the length s
for offspring dispersal and disease transmission are appr
mately the same and both are equal to the size of a patc
territory occupied by an individual organism@8#. Modeling
the system as a lattice of square patches, each of which
support a single organism, we assume that a new organ
must be born on a patch directly bordering that of its pare
We also assume that the disease can spread from an o
ism on a given patch only to those that live on the patc
directly bordering that patch. In addition, we assume that
disease is highly infectious and lethal; all organisms clo
enough to an infected one do contract the disease and
from it.

One might also introduce a time scale for the movem
of organisms. In the well-mixed case, it is assumed that
ganisms move extremely rapidly compared to the rate
births, but extremely slowly compared to the spreading r
of diseases, and that they pay no attention to the position
other organisms except to avoid having two occupying
same patch. Thus snapshots of the system separated
small but finite time interval, would reveal entirely uncorr
lated, randomly distributed populations, but these configu
tions would be frozen on the time scale required for a
epidemic, no matter how large, to run its course.

In the sessile case, the organisms do not move at all. B
the rules that offspring live next to their parents and th
diseases propagate through local contact only lead to n
trivial spatial correlations in the population. The effects
these correlations on evolutionary dynamics are the princ
phenomena of interest in this paper.

II. DETAILED SPECIFICATION OF THE MODEL

The model consists of individual organisms that live
the sites of a regular~linear or square! lattice with periodic
©2001 The American Physical Society08-1
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boundary conditions. The total number of sites in the latt
is denoted byL. At any given time, there can be at most o
organism on a given site; i.e., each site is either occupied
a single organism or unoccupied. The individual organis
are indexed by an integer labeli and each is characterized b
two positive real numbersmi andbi determining its mortal-
ity and reproductive rate.

In a single time step, one site is selected at random.
rate at which sites are selected is denoted byr. If the site is
occupied by organismi, one of three things can happen.

~1! With probability mi , the organism dies, leaving th
site unoccupied.

~2! With probabilitybi , the organism attempts to produc
an offspring at a randomly selected nearest neighbor sit
the selected neighboring site is occupied, the offspring
aborted. If it is unoccupied, the offspringj is recruited there.
The mortality and birth rate of the offspring are given
mj5mi1Dm and bj5bi1Db . A mutation DxÞ0 occurs
with probability px , in which caseDx is uniformly distrib-
uted in the interval@2mx ,mx#, wheremm and mb are con-
stant parameters. If this procedure results inmj,0, thenmj
is set to 0, and similarly forbj .

~3! With probability d, the organism contracts a diseas
The disease spreads extremely rapidly to all neighboring
ganisms, and then to their neighbors, and so on, until i
stopped by a wall of unoccupied sites. Every organism t
contracts the disease dies before the time step is compl
Thus the result of a disease is that an entire connected cl
of occupied sites becomes unoccupied in a single instan

Note that we must always havemi1bi1d<1 for all i in
order for the probabilities to be well defined. If this conditio
is ever violated during the evolution of the system, we si
ply renormalize all themi , bi , andd by a uniform factor and
adjust the duration of the time step accordingly.

For most of this paper we consider the case of unifo
birth probability;bi5b for all i andpb50. We are particu-
larly interested in the case whered is extremely small com-
pared tob, but large compared to the rate of evolution of t
mi ’s. In rough terms, the life cycle of an individual organis
is typically short compared to the time between epidem
but the full population dynamics including the effects of d
ease occurs against a backdrop of slower evolutionary
cesses.

III. QUANTITIES OF INTEREST

To characterize the behavior of the system we focus
three quantities: the total number of organismsN in the sys-
tem; the average mortality ratêm&[( imi /N; and the dis-
tribution of epidemic sizesP(s). The size of an epidemic,s,
is defined as the number of organisms that die as a resu
a single disease event.P(s) denotes the relative frequencie
of epidemics with size equal tos observed during a suitabl
long time interval in the steady state, and is normalized
unity: (s51

` P(s)51.
Note thatP(s) is also closely related to the cluster si

distribution for the system as it is commonly defined in s
percolation studies. LetC(s) be the normalized probability
that a connected cluster chosen at random~with each cluster
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given equal weight! has sizes. Since any individual is
equally likely to start an epidemic, the probability that a
epidemic will have sizes is

P~s!5sC~s!/NP , ~1!

whereNP[(s51
` sC(s).

IV. STEADY STATES IN ONE DIMENSION

A. The well-mixed case

The 1D case where individuals are randomly distribu
in space at every time step can be treated analytically@1#. Let
n(t) denote the fraction of sites occupied at timet and as-
sume, for the moment, thatmi5m ~andbi5b) for all i, and
that pb5pm50 so there is no mutation.

In the infinite system size limit, for any finite set of site
the probability that a given site is occupied isn, independent
of the other sites in the set.~If the set is infinite or if the
system size is sufficiently small, the probabilities must
correlated to ensure that the density is indeedn.! To compute
C(s), suppose a site is selected at random from among
set of occupied sites that are immediately to the right of
unoccupied site. The probability that the cluster contain
this site is of sizes is equal to the probability that each of th
s21 sites directly to its right are occupied and the next o
is unoccupied:

C~s!5ns21~12n!. ~2!

From Eq.~1! we obtain

P~s!5sns21~12n!2, ~3!

which implies an average epidemic size

savg5
11n

12n
. ~4!

Note thatP(s) decays exponentially for larges.
Since the probabilities of occupation of adjacent sites

independent, the following equation describes the dynam
of n in the large system limit:

dn

dt
5rn @b~12n!2m2d savg#, ~5!

where the first factor ofn represents the probability of se
lecting an occupied site on a given time step and the facto
(12n) enters the birth term because offspring are crea
only if the target site selected for dispersal is unoccupied

The steady state valuen* is obtained by settingdn/dt to
zero, which yields

n* 512@m2d1A~m2d!218 b d#/~2b!. ~6!

Regardless of the value ofd, smallerm leads to largern* .
Thus, although the average epidemic size grows with
creasingm, the total population density always increases
m/b or d/b is too large, thendn/dt is always negative and
the population decays to zero, or extinction. Henceforth
8-2



t
u-

-
i

ith
lly
ta
ce

e

,

s

l

n

e
n
ed
d

ee
ue
ad
ite
ce
n,
in
io

i
o
e

.

g
f

ig

s
cies
en

ster
sult

e-
ed
e

ter-

f-
-
tes.

n

at
ern-

ly
ral
ing

ere
tes
ny,
ust

D

EVOLUTION IN A SPATIALLY STRUCTURED . . . PHYSICAL REVIEW E63 041908
shall assumed/b!1 andm/b sufficiently small that extinc-
tion due to natural deaths does not occur.

The introduction of mutations inmi has a dramatic effec
on the long-term behavior of the well-mixed model. Evol
tion will select for smaller values ofmi in this case. Since
individuals with differentm’s are randomly mixed through
out the system, the rates of birth and the effects of epidem
are the same for all individuals. Thus the individuals w
longer life expectancies and their offspring will gradua
take over the system. This argument is supported by a s
dard invasion analysis in which one assumes a small con
tration n1!1 of organisms withmi5M1 in a sea of organ-
isms n2 with mi5M2 @1,9#. Letting n5n11n2, the
dynamical equations for the population densities are

dnx

dt
5rnx@b~12n!2Mx2d savg# ~7!

for x51,2 andsavg still given by Eq.~11!.
Consider a system withmi5M2 for all i that has reached

a steady state. The term in brackets on the right-hand sid
Eq. ~7! then vanishes forx52. If a very small densityn1
!n2 of organisms withmi5M1 is now added to the system
the right-hand side of the equation forx51 is obviously
positive if and only ifM1,M2. Thus mutant organisms with
smaller values ofm grow in concentration, while mutant
with larger values ofm will decay to extinction.

Let ^m&(t) be the average value ofmi over the current
population. In a system where mutation occurs slow
enough that the distribution ofmi ’s remains narrow and the
system is always near a steady state corresponding tomi
5^m& for all i, ^m& will exhibit steady decay toward zero. I
a finite system with sufficiently smalld, this implies that̂ m&
will eventually become so small that birth events will fill th
lattice, forming one big cluster that will be wiped out in a
epidemic. Thus the evolutionary dynamics in the well-mix
model drives any finite system to extinction and no stea
state is reached.

Note that the probabilistic nature of the model guarant
that extinction will eventually occur in any finite system d
to a large fluctuation. When we speak of a statistical ste
state here, we mean that the system would persist indefin
in that state if it were infinite in extent. Indefinite persisten
does not occur for the well-mixed model with evolutio
since ^m& never reaches a statistically stable value. Us
finite simulations, however, extinctions caused by evolut
toward ^m&50 and by statistical fluctuation with fixed̂m&
can be distinguished. Extinction occurs much more rapidly
the former case, and the time to extinction grows much m
slowly than the system size.~We have not measured th
precise dependence.! For a stablê m&, the time to extinction
due to fluctuations grows exponentially with system size

B. The sessile case

When the organisms are considered immobile,a priori
analysis becomes more difficult. Because each offsprin
born next to its parent and stays there, the probability o
site being occupied depends on the probability that its ne
bors are occupied. Even for identical individuals, whenmi
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5^m& for all m, calculation ofn* is beyond the scope of thi
work. Nevertheless, the correlation between the occupan
of sites decays exponentially with the distance betwe
them, so a self-consistent calculation of the average clu
size is possible, and an understanding of the long-term re
of evolutionary dynamics can be obtained.

Numerical simulations reveal a striking difference b
tween the long-term evolution in the sessile and well-mix
cases. In the sessile case,^m& fluctuates about a stable valu
and the system reaches a statistical steady state.~Reference
@10# discusses another example of the selection of an in
mediate rates in a parasite-host system.! Figure 1~a! shows
time traces of̂ m&. The longer, solid curves show that di
ferent initial conditions witĥ m& ’s above and below the se
lected value converge to statistically indistinguishable sta
The dotted traces show that the steady state^m& depends
upon the value of mutation rate. When the mutation rate~or
mm) is sufficiently small that there is effectively no evolutio
on the scale of the disease rated, we expect̂ m& to be inde-
pendent ofmm . Figure 1~b! shows the distribution ofmi in
the steady state for the two longer runs shown in~a!.

Our goal is to calculate the steady state value of^m&. The
key is to identify an appropriate optimization problem th
can be solved on the basis of plausible assumptions conc
ing the cluster size distribution for fixedm. We argue that the
relevant quantity to optimize is thegrowth rate of a colony
surrounded by unoccupied sites. Consider a group~not nec-
essarily a single cluster! of organisms withmi5m that is
contained within a finite interval on the lattice. Letx(t) be
the position of the rightmost organism at timet. The growth
rate of the colony is defined as the average value ofdx/dt
for larget. We wish to find the value ofm that maximizes the
growth rate for given values ofb andd.

Note that maximizing the growth rate is not logical
equivalent to minimizing the total death rate from natu
causes and diseases. The interior structure of the grow
colony is not important in the sessile case in 1D. Since th
is no way for a competing colony to invade unoccupied si
between the leftmost and rightmost members of a colo
faster growing colonies win. For completeness, one m

FIG. 1. Evolutionary behavior of mortality rates in the 1
sessile case. Plots are shown for a lattice of 104 sites, withb51,
pm50.1, andd51024. ~a! ^m&(t) for different mutation rates and
different initial conditions. The upper trace~dots! is for mm

50.001. The lower trace~dots! is for mm50.02. The two longer
traces~solid lines! are formm50.005 with different initial uniform
values ofmi . ~b! The final distribution ofmi in each of the two
mm50.005 runs, averaged over the time interval from 12 to 24~not
shown! for each run.
8-3
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also note that when two colonies come in contact, they
fluence each other through epidemics initiated in the clu
where they are joined, which consists of two ‘‘subclusters
one from each colony. In this configuration, the subclus
from one colony can be destroyed by a disease initiated
the adjoining subcluster from the other colony. The effects
such epidemics are neutral on average. In any given confi
ration the product of the length of a subcluster and the pr
ability that subcluster will be destroyed by a disease initia
in a subcluster from the other colony is the same for b
subclusters~proportional to the product of the sizes of th
two subclusters!. Thus the epidemics that span the front d
viding the two colonies do not, on average, affect the po
tion of the front; the motion is determined entirely by ho
fast the colonies grow into a gap that separates them.

To estimate the value ofm that gives rise to the fastes
growth rate, we make three simplifying assumptions. F
we make the approximation that the distribution ofmi in the
steady state is ad function atmi5^m&. Second, weassume
that C(s) decays exponentially in the steady state cor
sponding tô m&; i.e., that

C~s!5Ae2as, ~8!

whereA51/(s51
` C(s) is a normalization constant. The latte

assumption can be checked numerically and is confirme
the degree illustrated in Fig. 2. Notice that the exponen
form holds down to rather smalls. If this were not the case
the calculations below would contain additional numeri
factors determined by the precise form of the distributio
Finally, we assumethat the statistics of clusters at the ed
of a growing colony are the same as those in the bulk ste
state. This assumption is also borne out by the numer
simulations summarized in Fig. 2.

To calculatec, the average cluster size in the bulk stea
state, we begin with the rate equation forn, rewritten in a
way that does not depend upon the assumption of unco
lated site occupation:

dn

dt
5rn Fb

1

c
2m2d 2cG . ~9!

The coefficient ofb is just the probability of selecting a
occupied site at the edge of a cluster and selecting a ne
boring unoccupied site for the offspring. Each edge of
cluster contributesb/2 to the rate because exactly one of
two neighboring sites is unoccupied. The precise coeffic

FIG. 2. Cluster size distributions in the 1D sessile case witb
51.0 andd51024. NormalizedC(s) ~left! andCedge(s) obtained
from clusters in a growing colony.
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of d should ben(ssP(s), or n savg , whereP(s) is obtained
from C(s) via Eq. ~1!. Using the form ofC in Eq. ~8!, we
obtain

c5
1

12e2a
~10!

and

savg5
11e2a

12e2a
. ~11!

For our present purposes, we consider the casea!1, corre-
sponding to the largec’s that arise ford!b. It then becomes
reasonable to writesavg52c. @Note that for the well-mixed
case, Eq.~2! has the form of Eq.~8! with a5 logn, and Eqs.
~5! and ~9!, with 2c replaced bysavg , are equivalent.#

In the steady state, the right-hand side of Eq.~9! vanishes,
implying

c5
m

4d S 211A11
8bd

m2 D . ~12!

Figure 3 shows a comparison of this formula with simulati
results ford51024 and 1025. Note that ford!m2/b we
havec.b/m and the cluster size distribution becomes ind
pendent ofd.

For a colony growing into unoccupied territory, th
growth rate is given on average by

dx

dt
5r Fb

2
2m @11C~1!g#2d ~2c21gc!G , ~13!

whereg is the average size of a ‘‘gap,’’ a string of unocc
pied sites between two clusters. The coefficient ofb accounts
for the fact thatx advances only if the birth occurs to th
right of the rightmost organism. The coefficient ofm is unity
except when the rightmost organism forms a cluster of s
1, in which casex decreases additionally by the size of th
gap to its left. The coefficient ofd is *s(s1g)C(s) ds, the
first factor ofs representing the probability of selecting a s
in the cluster and thes1g term representing the resultin

FIG. 3. Comparison of calculated average cluster size w
simulations. Plots are shown for the caseb51.0. For each data
point, all organisms in the system have the same fixed value
m—there is no evolution.
8-4
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EVOLUTION IN A SPATIALLY STRUCTURED . . . PHYSICAL REVIEW E63 041908
size of the change inx. @Note the difference between th
coefficient, which is orderc2, and the coefficient ofd in Eq.
~9!. The difference arises becausenL5Ncc has been fac-
tored out in Eq.~9!, whereNc is the number of clusters in th
system.#

For d!m, the distribution of gap sizes is dominated b
the statistics of gaps produced by natural deaths rather
diseases. During the periods between diseases we expe
mi to mutate toward lower values, so^m& becomes substan
tially smaller thanb. Moreover, when a disease creates
large gap, that gap can only be filled in from the ends; th
is no way to break the large gap into two smaller ones
inserting organisms in the middle of it. The result is that t
vast majority of gaps have size 1 andg remains of order
unity even thoughc can be much larger. In addition, sinc
b.^m&, isolated organisms are rarely produced and do
remain isolated for long, so thatC(1)!1. These argument
become increasingly unreliable asd is increased, in which
case the selected̂m& increases andc decreases, but we ar
interested in the limit of smalld. Table I shows values ob
tained from simulations withd51023, 1024, and 1025.

For sufficiently smalld ~which generates largec), we
may neglect the contributions proportional tog in Eq. ~13!.
Figure 4 shows a comparison of Eq.~13! with simulations

TABLE I. Cluster and gap size data for 1D sessile model w
different disease ratesd. Data were compiled from single runs on
system of 104 sites with parametersb51.0, initial mi all set to 0.1,
pm50.1, mm50.001. Following a transient of 105 epidemics, data
were averaged over 200 configurations separated in time by 2
epidemics.

d Average clusterc Average gapg
Fraction of size
1 clustersC(1)

1023 6.2 3.1 0.14
1024 14.5 2.4 0.07
1025 35.4 2.8 0.03

FIG. 4. Comparison of calculated growth rate with simulatio
Plots are shown for the caseb51.0. For each data point, all organ
isms in the system have the same fixed value ofm—there is no
evolution. The theory curves are obtained from Eq.~13! under the
assumption that theg terms are negligible. The arrows indicate th
average values ofm measured in the steady state of systems of4

lattice sites withpm50.1 andmm50.001.
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for d51024 and 1025 and several values ofm, where we
have used Eq.~12! to expressdx/dt in terms of m. The
agreement is quite good.

Substituting forc from Eq. ~12! we obtain the following
equation form0, the value ofm that maximizesdx/dt:

m0
31dm0

218bdm018bd224b2d50. ~14!

Note thatb is of order unity. We make the ansatzm0;d1/3

and count powers ofd in each term. Neglecting terms o
power 4/3 or higher ind, we find

m0.41/3b2/3d1/3, ~15!

justifying the ansatz. The approximation neglects term
factor of d1/3 smaller than the result.

Equation~15! represents a parameter-free calculation
the value of^m& that should be selected by evolution fo
sufficiently small d. This may be compared with averag
values measured in simulations. Ford51024 and 105 ~with
b51), we calculatem050.074 and 0.034, respectively
Simulations on a lattice of 104 sites with pm50.1 andmm
50.001 yield ^m&50.06860.002 and 0.02960.003. Note
from Table I, however, that for these values ofd, the quan-
tity C(1) g is not negligible, being of order 0.1. When th
measured values are used in Eq.~13!, the calculated values
of m0 shift to 0.070 and 0.033. The reasonably good agr
ment with simulations indicates that the evolutionary dyna
ics is consistent with our picture of the 1D system. In p
ticular, the system retains a finite correlation length~or
average cluster size! for any nonzerod, and a treatment ne
glecting correlations in the sizes of adjacent clusters is
equate for understanding the steady state.

V. STEADY STATES IN TWO DIMENSIONS

A. Self-organized criticality

The analyses of the well-mixed and sessile cases in 1D
not transfer easily to two dimensions. In the well-mixed ca
however, the basic phenomenology is the same. As in
the lack of spatial correlation among closely related o
spring implies that it is always advantageous to live long
Evolution drives^m& toward zero, resulting in increasingl
large fluctuations in the population size and rapid extincti

In the sessile case, the situation is quite different. As
1D, colonies of organisms with lowermi become more dens
and epidemics propagate more easily through them, wh
provides a mechanism for suppressing the evolutionary p
sure toward^m&50. For fixedmi5^m&, two qualitatively
different behaviors are observed in simulations.~See Fig. 5.!
For relatively small̂ m& as in Fig. 5~a!, the population is bes
described as consisting of distinct colonies that grow i
large empty spaces and sometimes merge. The density w
a colony is sufficiently high that almost all the organisms
it die in a single epidemic, with just a few survivors aroun
the edges. It then takes a long time, comparable to the
ease rate, for the new colonies spawned by the survivor
fill in the emptied regions. For relatively large^m& as in Fig.
5~b!, the population density remains low and is roughly h

00

.
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mogeneous in space. Epidemics carve out relatively sm
empty regions, which are filled on time scales that may
slow compared to the birth rate, but are fast compared to
disease rate.

In two dimensions, colonies are not protected from inv
sion the way they are in 1D. Any gaps in the boundary of
growing colony permit invasions by organisms with differe
mi . Thus there is less justification for using the colo
growth rate as a criterion for selecting the evolutionar
stable state. Moreover, if the same argument applied ab
to the 1D case is attempted for 2D, the self-consistency
the approximations is not maintained. In addition to the te
nical difficulty of estimating the number of sites available f
new offspring in a typical cluster, a fundamental difficulty
encountered: the assumption of an exponentially deca
P(s) is violated in the evolutionarily stable state. For suf
ciently smalld and large system size, the system evolves
state whereP(s) has a power-law tail, and may be classifi
as an example of aself-organized criticalstate @11#. The
power law inP(s) may be cut off either by the finite system
size or by nonzerod. ~See Ref.@12# for analysis of another
host-pathogen model in which evolution of the disease tra
missibility drives the system to a critical state.!

Figure 6 shows the distribution of epidemic sizes in t
steady state, which has a power-law regimeP(s)}s2n with
n.1. For this figure,d5331026 was chosen~by trial and
error! such that the cutoff due tod was roughly the same a
the cutoff due to the finite system size. Plots ford51
31025 and 131026 are shown for comparison. Studies wi

FIG. 5. Snapshots of a 2563256 system after approximately 104

epidemics. Parameters areb50.5 andd51025. Gray scale indi-
cates the value ofmi . Darkest gray indicatesmi near 0.09; lightest
gray indicatesmi near 0.2.~a! All mi fixed at 0.09: dense, separa
colonies.~b! All mi fixed at 0.20: homogeneous density with sm
holes due to epidemics.~c! All mi fixed at 0.15: critical structure
corresponding to the average value ofm selected by evolution.~d!
Evolved system withpm50.1 andmm50.01.
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smaller system sizes indicate that the peak at large sizes
served for the smallestd would disappear if the system siz
were increased. For thed5331026 run, ^m& began at 0.2b,
reached a value of roughly 0.3b after approximately 1000
epidemics, then fluctuated between 0.30b and 0.32b over the
course of the following 50 000 epidemics.

We note that the observed value ofn is consistent with
that measured by Henley for a ‘‘self-organized percolatio
~SOP! model@13#. The SOP model differs from ours in thre
respects:~i! new hosts are generated at each unoccupied
at a steady rate, independently of the presence of other h
in the system;~ii ! the rate at which disturbances occur,d in
our model, is assumed to approach zero; and~iii ! there is no
evolutionary mechanism in the system. We have not
gathered enough data to determine whether the two mo
are in different universality classes.

It may be tempting to relate the self-organized critic
behavior to ordinary site percolation in 2D, but the conne
tion is tenuous. As Fig. 5~c! clearly shows, the spatial struc
ture of the population in the steady state is far from hom
geneous. There are relatively dense regions where dise
have not appeared for some time, and there are spars
gions that are in the process of being refilled after large e
demics have swept through. Thus we do not expect the
erage density in the critical state to be directly related to
site percolation threshold.

B. Evolving b and m together

It is instructive to consider what happens in this mod
whenb andm arebothallowed to evolve. The system pass
through three distinct regimes:~1! an initial rapid adjustment
of ^b& and^m& to bring their ratio to a critical value as in th
case whereb is held fixed (̂ b&/^m&'2.5); ~2! a period in
which ^b& and ^m& grow in tandem with their ratio roughly
constant, generating a power-law distribution of epidem

FIG. 6. Normalized epidemic size distributions from simulatio
in the 2D sessile case on a 5123512 lattice for the three values o
d indicated in the legend. Parameters areb50.5, pm50.1, and
mm50.02. The central curve shows the power law correspondin
the smallestd that permits data uncorrupted by finite size effec
The upper~lower! curve is shifted up~down! by a factor of 10 for
clarity. The solid line of slope21 is a guide to the eye.
8-6
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EVOLUTION IN A SPATIALLY STRUCTURED . . . PHYSICAL REVIEW E63 041908
sizes with an increasing cutoff size; and~3! a period in which
the epidemic size distribution is dominated by finite size
fects~rather than cut off due to nonvanishingd), population
density fluctuations become extremely large, and eventu
extinction becomes probable.

During the last period,b andm increase faster than expo
nentially in time, and̂ b&/^m& increases rapidly.~A similar
situation occurs in the 1D system as well.! In effect, the
dynamics is dominated by the rapid evolution between d
turbance events, which leads to extremely high birth ra
The epidemic size distribution in this regime is dominated
system-wide events, one of which eventually causes the
tinction. The time to extinction by this mechanism does d
pend upon the initial value ofd, but due to the exponentia
growth of the birth and mortality rates during the seco
regime listed above, it is impossible to delay the extinct
for long. It is clear from the previous section, however, th
a persistent population can be obtained if a maximum b
rate is imposed, which is clearly a reasonable restriction f
biological system.

VI. CONCLUSION: SPATIAL STRUCTURE, KIN
SELECTION, AND OPTIMIZATION

PRINCIPLES

The emergent spatial structure in the model we have
vestigated is of interest for both biologists and physicis
First, it is a crucial ingredient in the evolutionary stability
this simple system. Second, it is an example of a nonequ
rium physical structure that arises as a solution to a comp
optimization problem. We conclude with some remarks
each of these issues.

In the well-mixed model, if a disease infects an individu
it is transmitted to a neighbor that is a randomly selec
individual. However, in the sessile model neighbors
likely to be closely related because of the contact proc
nature of reproduction. When a disease infects an individ
the individual passes it on to relatives, and this interact
brings up issues of ‘‘kin selection.’’ In the well-mixe
model, selection drives the mortality rate to zero because
individual’s fitness is just a matter of producing more o
spring than other individuals. In the sessile model, an in
vidual’s fitness is influenced by siblings passing diseases
to one another, and an effective strategy for passing on m
R
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-
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surviving offspring is to die and leave holes that stop dise
transmission. Previous kin selection studies have focu
primarily on the competition between siblings that resu
when offspring are produced locally@14–16#; these models
typically examine evolution for dispersal, and the conce
behind kin selection may help explain the dispersal of o
spring even when such dispersal is risky. In a similar man
individuals in our model have a decreased fitness when
spring are produced locally because death by disease is
diated by neighbors. In our case we have not incorpora
evolution of dispersal; however, if we were to fix mortali
rates, we strongly suspect~and preliminary runs show! that
selection would favor higher dispersal. Unfortunately, high
dispersal causes the mortality rate to evolve to lower lev
which in turn causes extinction.

The present study may also be relevant for future inve
gations into the origin of power-law damage distributions
evolving systems. Two intriguing but rather different expl
nations for the generic occurrence of power-law distributio
have been suggested in the recent physics literature.
theory of self-organized criticality~SOC! explains the power
laws by placing the model in a broad class of systems
exhibit avalanche dynamics when driven very slowly@11#. In
such models, power-law distributions of avalanche si
emerge at the slowest driving rates for generic param
values. A second proposal is that power laws are indica
of a system that has resulted from a design process that
duces states that minimize the expected damage in an un
tain environment, states exhibiting ‘‘highly optimized tole
ance’’ ~HOT! @17#. One may argue that natural selection
the biological world acts to create HOT configurations at
organism or ecosystem level.

Our 2D results are characteristic of SOC systems. Evo
tion of the mortality to a critical value is roughly analogou
to the evolution of the slope of a granular pile to the val
that produces power-law distributions of avalanches@18#. It
is interesting to note, however, that the 1D model with t
same dynamical rules does not yield SOC. Our curr
model is not expected to give rise to HOT states, at leas
part because the system is spatially homogeneous. In fu
studies we plan to seek evidence for rudimentary HOT sta
resulting from evolution in systems with a slow gradient
the disease rate.
d,
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